Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

Современные электромеханические преобразователи, несмотря на высокую эффективность, все же не обходятся без некоторых потерь энергии, как магнитной, так и электрической и механической. Эти потери сопровождаются выделением тепла, усилением шума и вибрации, которые обусловлены неизбежным трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, а также скачками нагрузок.

В связи с этим возникает вопрос: можно ли снизить такие "утечки" и, в итоге, повысить коэффициент полезного действия системы? Если да, то как это достичь? Для ответа на эти вопросы мы и подготовили данную статью.

Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.

Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.

Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.

Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.

Оптимизируем работу промышленного оборудования с помощью контроллеров-оптимизаторов. Эти устройства способны повысить КПД дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования, используемого в различных сферах: промышленности, сельском хозяйстве и ЖКХ.

Кроме этого, контроллеры-оптимизаторы могут предотвратить перегрузки кронштейнов при запуске мешалок, нейтрализовать гидроудары в трубопроводах, а также обеспечить плавный запуск тяжелого и очень тяжелого оборудования. Обычные устройства плавного пуска не всегда справляются с этой задачей.

Ценовая политика

Контроллеры-оптимизаторы являются эффективным средством увеличения КПД оборудования и в то же время они значительно более доступны по цене, чем преобразователи. По сравнению со своими аналогами, устройства от отечественных производителей обладают ценовым преимуществом: устройство мощностью 90 кВт можно приобрести по цене от 90 до 140 тысяч рублей.

Достоинства и недостатки контроллеров-оптимизаторов

Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.

Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.

Выбираем наилучший вариант для повышения КПД

Для того чтобы повысить КПД двигателя того или иного электропривода, необходимо выбрать соответствующее устройство, учитывая особенности работы оборудования.

Если требуется изменение скорости привода, то оптимальным решением будет покупка преобразователя частоты. В случае, если скорость вращения двигателя не требуется изменять или это делать неохота, то лучше выбрать контроллеры-оптимизаторы.

Более доступная стоимость данных устройств - это их главное преимущество по сравнению с «частотниками».

Ключевыми факторами, влияющими на КПД электродвигателя, является несколько факторов, включая степень его загрузки относительно номинальной, конструкцию, модель, износ, а также отклонение напряжения в сети от номинального значения. Не стоит забывать, что после перемотки КПД электродвигателя может снизиться. Для более эффективной работы электропривода рекомендуется обеспечивать минимальную загрузку не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту питающего тока. Повышение КПД двигателя может быть достигнуто с помощью специального оборудования, однако не всегда нужно или возможно реализовать все эти меры.

Для улучшения КПД используются различные приборы, в том числе частотные преобразователи, которые изменяют скорость двигателя, изменяя частоту питающего напряжения. Также используются устройства плавного пуска, которые ограничивают скорость нарастания пускового тока и его максимальное значение. В этой статье мы сравним современные решения для повышения КПД двигателей на основе эффективности работы и экономической целесообразности.

Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.

Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.

Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».

Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.

Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.

Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.

Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.

Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.

Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.

При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.

Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.

В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.

В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.

Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.

Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.

Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.

Контроллеры-оптимизаторы: устройства для плавного пуска

Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.

Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.

Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.

Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы представляют собой компоненты, которые контролируют фазы тока и напряжения питания электродвигателя. В результате этого осуществляется полное управление приводом на всех его этапах работы, а также защита его от таких аномалий, как нарушение чередования фаз или пониженного/повышенного напряжения. Это устройство эффективно согласует значение крутящего момента, развиваемого двигателем, и значение механического момента, нагружающего вал привода. Коэффициент мощности повышается, при этом скорость вращения ротора остается прежней. Важно отметить, что контроллеры-оптимизаторы не требуют подключения дополнительных устройств, так как их функциональность является завершенной.

Кроме того, контроллеры-оптимизаторы обладают способностью прекращать брать мощность из питающей сети в те моменты, когда полупроводниковые переходы тиристоров закрыты, то есть не пропускают электрический ток. Открываются тиристоры при поступлении управляющих импульсов. Задержка подачи управляющих импульсов определяется степенью нагрузки привода. При переходе тока через ноль тиристоры закрываются.

Очень важно отметить, что контроллеры-оптимизаторы реагируют на изменение нагрузки настолько оперативно, что скорость реакции составляет лишь сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *